
MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-018av

;atmevi'; ara -air'ttln, 9  M,'e ita ieaoeo. nol e:mooettnq ,no rev,", m ,e :1iievon f , i!r -'t o '.. me ; .eng INar Snq tr'.i o en e orate Ar 'v Ai e et of ti$
0 cfle Ptr ,, #r- t I 'C 41, n S ge -'n "'I aUP -M'S~ sorcs * h~smiqtom -,eaaoo r-e's sef. ces.- -recor 3e O'lor a, 0  Doe', a m m aejo-t, 12' 1Jeffersons

o,, ..- ,. -- se zC -'-.tcr'. A 2202 430, Inda tor C-fice,) a Ma.aqe-en iro 3',age! -isoer~c'. et, os' 0,:ec! (0704-038),&S N sngtn :C 20503]

1. AGENCY USE ONLY (Leave blank) 2, REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 30, 1990 Final 14 Mar 88 - 30 Apr 90

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Diffusion in the Surface Layer of the Convective

Boundary Layer DAAL03-88-K-0036

6. AUTHOR(S)

J. C. Wei

N 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(E . PERFORMING ORGANIZATIONNS.REPORT NUMBERUniversity of Colorado .", 'OOURERTNMR

Boulder, CO 80309

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORINGAGENCY REPORT NUMBER
U. S. Army Research Office 

......

P. 0. Box 12211
Research Triangle Park,'NC 27709-2211 ARO 25882.3-GS

11. SUPPLEMENTARY NOTES

The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

I £

13. ABSTRACT (Maximum 200 words)

Dispersion in the planetary boundary layer (PBL) is important in a variety
problems including air pollution and obscurant cloud behavior in a battlefield
environment. Dispersion is a stochastic phenomena caused by the random or
stochastic nature of PBL turbulence, and the fluctuating concentration field
often is as important as the mean field. Indeed, laboratory measurements show
that the root-mean-square (rms) fluctuating concentration, sigma, in plumes
from continuous point sources can be 5 times greater than the en~enmHe-mean
concentration.C; Fackrell and Robins, 1982; Deardorff and Willis, 1988); a

:; similar situation exists in smoke clouds (itanna-1984)' Thus, sigma& as well
as C must be estimated to assess the visibility limits of an obscura~t cloud
or the air quality effects of a pollution source. -- /,*

(continued on reverse side)

i 14. SUBJECT TERMS Convective Boundary Layer, Dispersion, Planetary 15. NUMBER OF PAGES
Boundary Layer, Air Pollution, Obscurant Cloud Behavior,
Battlefield Environment, and Stochastic Models 16. PRICE COOe

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prescrbed by ANSI Std Z39-

1



#

- Under this program, stochastic dispersion models have been develoDed
far the C and sigmaf fields due to a passive tracer source in the convective
boundary layer (CBL , with the main aim of improving the understanding and

"' c predictability of dispersion in that layer. Effects were focused on the
CBL because: 1) the PBL is in a convective state a substantial fraction of
the time (equivalent 30 - 40")), 2) the turbulence structure of the CBL is
well documented (lyr a r 1988y, and 3) laboratory data (Willis and
Deardorff, 1976, 1978, 1981T'and numerical results (Lamb, 1978) exist for
testing models. Furthermore, dispersion in the CBL cannot be modeled by
the standard statistical (ray-o--, 1211)-or eddy-diffusion theories because
of the complicatons caused by the CBL turbulence--its vertical inhomogeneity,
vertical velocity skewness, and large time scale.
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1. Introduction

Dispersion in the planetary boundary layer (PBL) is important in a variety

of problems including air pollution and obscurant cloud behavior in a battlefield

environment. Dispersion is a stochastic phenomena caused by the random or stochastic

nature of PBL turbulence, and the fluctuating concentration field often is as important

as the mean field. Indeed, laboratory measurements show that the root-mean-square

(rms) fluctuating concentration, O'C, in plumes from continuous point sources can be

5 times greater than the ensemble-mean concentration C (Fackrell and Robins, 1982;

Deardorff and Willis, 1988); a similar situation exists in smoke clouds (Hanna, 1984).

Thus, ac as well as C must be estimated to assess the visibility limits of an obscurant

cloud or the air quality effects of a pollution source.

Under a program sponsored by the U.S. Army Research Office (ARO), we have

developed stochastic dispersion models for the C and ac fields due to a passive tracer

source in the convective boundary layer (CBL), with the main aim of improving our

understanding and predictability of dispersion in that layer. We focused on the CBL

because: 1) the PBL is in a convective state a substantial fraction of the time (- 30 -

40%), 2) the turbulence structure of the CBL is well documented (Wyngaard, 1988),

and 3) laboratory data (Willis and Deardorff, 1976, 1978, 1981) and numerical results

(Lamb, 1978) exist for testing models, Furthermore, dispersion in the CBL cannot be

modeled by the standard statistical (Taylor, 1921) or eddy-diffusion theories because of

the complications caused by the CBL turbulence-its vertical inhomogeneity, vertical

velocity skewness, and large time scale.

The stochastic models developed in this program are Lagrangian and are thus

a natural way to model dispersion, i.e., by following single particles or particle

pairs through the turbulent flow given the Eulerian velocity statistics. The mean

concentration is found from a "one-particle" model by computing the probability density

function (p.d.f.) of particle position from the numerically-calculated particle trajectories.

It is labeled "one-particle" because each particle is assumed to travel independently of

the others. The "one-particle" model has progressed to the point of handling dispersion

in inhomogeneous skewed turbulence with large time scales and thus can deal effectively

with the complications in the CBL. The calculation of o,, requires a "two-particle"

model in which one tracks the simultaneous motion of two particles that start from some
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random initial separation and arrive at the "same" place at the same time. The two-

particle model is currently limited to homogeneous turbulence.

For the mean concentration, we developed a model for point and area sources

with emphasis on the surface layer or lowest tenth of the CBL where the vertical

inhomogeneity is strongest, but results have been generated for sources throughout the

boundary layer. For concentration fluctuations, we developed a numerical code based

on Thomson's (1990) recent model and have reproduced his key results. The current

limitation of this model to homogeneous conditions means that it may only be applicable

to elevated sources in the CBL, i.e., above the surface layer.

In the following sections, we briefly highlight the main results from this modeling

program.

2. Mean Concentration Model

Dispersion is assumed to occur in a CBL with horizontally homogeneous but

vertically inhomogeneous, stationary turbulence; the CBL is defined by 0 < z < h, where

z is the height above the surface and h is the depth of the layer. Only vertical dispersion

is modeled, i.e., the vertical velocity and displacement of a particle, since the vertical

and horizontal turbulence components are assumed to be independent. The mean wind

U is taken to be uniform with z.

2.1. Single-Particle Model

Equations governing the vertical velocity WL and height Z of a particle follow from

Thomson's (1987) general model and have been used in Well (1989, 1990a, 1990b). They

are

dWL = a(Z, WL)dt + (COE) 2 (1)

dZ = WVL( (2)

where the first term a(Z, WL) on the right-hand-side of (1) is a deterministic velocity

forcing function, the second term is the random forcing function, subscript L denotes

a Lagrangian velocity, and t is time. In the second term, Co is an assumed universal

constant taken as 2, e is the ensemble-averaged turbulence dissipation rate, and d is a

one-dimensional Gaussian random forcing with zero mean and variance dt.

The basis for choosing a(Z,WL) is discussed in Thomson (1987) and Well (1990a)

and requires an assumed form for the Eulerian p.d.f. of vertical velocity (w), pa(w). For
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the inhomogeneous skewed turbulence of the CBL, p. is assumed to be given by the sum

of two Gaussian distributions. The parameters defining pa are found by equating the

zeroth through third moments of the assumed form with the specified moments in the

CBL. The key moments are the second or velocity variance, o, and the third,

The moments are prescribed by simple analytical functions which were chosen to be

in broad agreement with laboratory experiments, field observations, and LES. Details

of the pa(w), profiles of the velocity moments and e, and the method of determining

a(Z,WL) can be found in Weil (1989, 1990a).

For a point source, Eqs. (1) and (2) are numerically integrated to obtain WL(t) and

Z(i). The crosswind-integrated concentration (CWIC), CY, downwind of a source can

then be found from

C (X,z) = Q PZ (,z - Z. (3)

(Weil, 1990a) where Q is the source emission rate, pz is the p.d.f. of particle height at

the downwind distance x, and subscript s denotes conditions at the source. pz is found

numerically from the particle trajectories with about 10 required to define a stable C Y

value.

2.2. Point Source Results

One of the key tests of the model was a comparison of point source predictions

with the laboratory experiments of Willis and Deardorff (1976, 1978, 1981), which

were conducted for z 8 /h = 0.067, 0.24, and 0.49. We found that the isopleths of the

CWIC in an z - z plane were qualitatively similar to those in the experiments and for

zs/h = 0.067, they showed the familiar "lift-off" of the maximum CWIC from the

surface. In addition, predictions of the mean particle displacement and the near-surface

CWIC were in good agreement with the laboratory data both as a function of source

height and downstream distance; these results were reported in Weil (1989).

In a further examination of the point source results, Weil (1989) investigated the

sensitivity of the mean, (Z), and rms, (Z 2 ) 1 / 2 , particle displacements and the CWIC

field to the vertical velocity skewness S = 3/C3, with S = 0 or 0.6. For sources in the

middle of the CBL, 0.25 < z/h < 0.75, the results showed that the differences between

the skewed and nonskewed cases were small, and the trends were consistent with

analytical results. The differences were most significant for sources at the boundaries.

For the surface source, (Z) and (Z 2 )1/ 2 were both larger for S = 0.6 than for S = 0,

whereas for z, = h, the opposite was true.
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A simple explanation for these results was given in terms of the w p.d.f. (Weil,

1990a). At the boundaries, particles are constrained to move away from the source with

positive velocities if z. = 0 and negative velocities if z, = h. For S > 0, the velocity

distribution is biased toward larger positive values and smaller negative ones than for

S = 0 or Gaussian turbulence. Thus, in skewed turbulence particles originating at a

surface source are transported upwards more rapidly than in Gaussian turbulence, and

the converse is true for a source at h. This bias also explains the asymmetry in top-

down and bottom-up diffusion from area sources in the CBL as discussed in Section 2.3.

In conjunction with this work, we conducted a systematic investigation of particle

displacement statistics for sources in the surface layer (z/h < 0.1); preliminary results

were reported in Weil (1990b) and a more complete paper is in preparation (Weil,

1990c). For a point source at the surface, S = 0, and a uniform e with z, the mean and

rms displacements exhibit the same dependence on downwind distance at short range

(X < 0.3):
(Z) = aIX 3/2 (Z)'/2 - =a2X 3/2  (4)
h h

where X is a nondimensional distance (Willis and Deardorff, 1976),

x = (5)

and is the ratio of the travel time (x/U) to the large-eddy turnover time (h/w.). The

proportionality of the displacement heights to X 3/2 is consistent with Yaglom's (1972)

similarity theory and results from the strong inhomogeneity in o, in the surface layer,

oC z 2 3 . For z./h > 0.1, (Z 2 )1 /2 oc X at short range (X < 0.7) which is consistent

with Taylor's (1921) statistical theory for homogeneous turbulence; this is attributed to

the quasi-homogeneity of turbulence for z/h Z 0.1.

For the surface source, two asymptotic models for (Z) were investigated: 1) an

eddy-diffusion model with the diffusivity K = "7- which should be valid when -r =

ar2/e 4 h/,., and 2) a "trajectory" or "ballistic" model which is valid when > h/w..

The original motivation for the diffusion model was that r < h/w. very near the

surface. However, this inequality breaks down at even modest heights and at z/h - 0.1,

r = 0.5h/w,.; i.e., it is not "small."

In the large 'r limit, the equation for the Lagrangian velocity was solved analytically

and integrated over time to yield Z(t) (Weil, 1990b). (Z(t)) was found by averaging

the Z(t) expression over the p.d.f. of the random velocity at the source and resulted in
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(Z)lh = 2.6X 3 / 2 . In the diffusion limit (e -- oo), we found (Z)lh = 1.2(X/E.) 3/ 2 where

e. = eh/wi.. The interesting result was that the dependence of (Z)/h on X was the

same in both r limits, i.e., it was insensitive to e.. However, the coefficient a, was quite

sensitive to e. being 2.6 as e. -- 0 and 1.2e. 1 / as e. -+ oc. Our numerical simulations

supported these analytical results and yielded a smooth variation of a, with E.. For C.

values (-. 1) typical of the surface layer, a, was not close to either asymptotic limit and

would have to be obtained from the numerical simulations.

For a surface source, the simulations showed that the effect of a nearly constant,

positive S was to increase a1 , a 2 relative to their values for S = 0 (Weil, 1989). This

was caused by the bias in the w p.d.f. mentioned earlier. However, the X3 /2 dependence

was retained for S > 0.

The model was extended to account for source momentum and buoyancy on the

rise and growth of a continuous point-source plume. This was done by superposing the

plume rise velocity, which was calculated from an integral model (Weil, 1988), and the

random ambient velocity obtained from the stochastic model. A key new concept is

that in a heated boundary layer the plume buoyancy flux decreases with time due to

the increase in the mean CBL temperature with time. This is especially important for

highly buoyant plumes that remain near the CBL top. The CWIC field and surface

CWIC predicted by the model were in good agreement with laboratory simulations of

highly buoyant plumes by Willis and Deardorff (1987). This work will be reported in a

future publication.

2.3. Area Source Results

The stochastic model has also been used to study diffusion from area sources in the

CBL and, in particular, to diagnose the asymmetry in bottom-up and top-down diffusion

(Weil, 1990a), a phenomena first found in the LES of Moeng and Wyngaard (1984,

1989). Our analysis was simplified by considering the diffusion properties of hypothetical

boundary layers with ow, and uT profiles qualitatively similar to those in the CBL but

with a uniform T(z). The concentration field, Z(z), due to a uniform area source was

found by superposing the fields due to (crosswind) line sources distributed in the along-

wind direction.

For inhomogeneous Gaussian turbulence, an asymmetry in diffusion patterns

about the mid-plane of the boundary layer resulted from the vertical asymmetry in

o,.(z). For r < h/tv., this asymmetry was predictable from an eddy-diffusion model
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with a z-dependent K since the effective K(z) values determined from the simulations

approached K - , the long-time limit of Taylor's (1921) theory. However, for

rTW./h > 0.5, K theory was inapplicable since OC/8z exhibited sign changes and K had

singularities, indicating regions of a countergradient flux. The causes of the K model

breakdown were the memory (i.e., large -r) and inhomogeneity of the turbulence which
were measured through the dimensionless parameter r8 o',,1,/z.

The simulations with inhomogeneous skewed turbulence showed that a positive S
led to an asymmetry between bottom and top sources in both OC/Oz and the effective

K; this was independent of the form of the variance profile, i.e., whether (was
symmetric about h/2 or not. Again, the asymmetry was caused by the bias in the w

p.d.f. as discussed earlier.

Our simulations of top-down and bottom-up diffusion motivated a simple theoretical

analysis of transport asymmetry in skewed turbulence (Wyngaard and Weil, 1989). A

kinematic model for homogeneous skewed turbulence with a small time scale (< h/w.)
showed that the transport asummetry was linked to the interaction of skewness with

the scalar flux gradient. It showed that the K for bottom-up diffusion developed a

singularity near z = h whereas the K for the top-down case was positive and well-

behaved. Stochastic model simulations showed that the asymmetry was sensitive to -r,

with small effects for - 0.1h/w. and large effects for 'r -- h/rn..

Another problem recently analyzed was the behavior of K and the dimensionless
temperature gradient, O~h, in the surface layer during very unstable conditions. Businger

et al. (1971) showed that temperature measurements supported a K oc z3/2 behavior

instead of K oc Z4/3 as predicted by free-convection similarity theory. We analyzed

this problem in the zero wind limit and proposed that the large convective eddies

generate a thin shear layer near the surface in which e oc w3 /z and the Cr. at the

surface is o-. t" 0.15w., in analogy with a shear-driven surface layer; the e behavior

is consistent with the LES of Schmidt and Schumann (1989). With the assumed e and
aw, our stochastic model simulations showed that K in the surface layer behaved as

K cc z3 /2. For an assumed constant e and a o.¢ approaching zero at the surface (i.e.,
as in similarity theory), the simulations yielded K oc z'/3. Thus, the conceptual picture
of the thin, convectively-driven shear layer along with the nonstandard c and a, scalings

seem to explain the findings of Businger et al. (1971). This work will be prepared for

publication.
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3. Concentration Fluctuation Model

3.1. Two-Particle Model

In a two-particle model, one calculates o-C at some point z downwind of a source

from
2= (C2(X, t)) _ C2 (Z, t)(6OI (6)

where (c2 ) is the mean square concentration, and the bold-faced symbol denotes a

vector. (c2) is found from the joint p.d.f. that two particles from some random initial

separation arrive at the same point at the same time. This p.d.f. is found numerically

from an ensemble of particle-pair trajectories.

We constructed a two-particle computer model based on Thomson's (1990) model

and briefly summarize his general approach along with key results to demonstrate the

capability of our code to reproduce his results.

Thomson proposed a three-dimensional model for two-particle dispersion in

homogeneous turbulence and resolved many of the deficiencies of earlier two-particle

models based on a one-dimensional formulation. His model is based on the same criteria

used in the one-particle case and requires an assumed form of the velocity p.d.f.; in this

case it is the two-point p.d.f. The model describes the evolution of the six-dimensional

position (±) and velocity (U) arrays that define the two-particle system: X(t) =

( ,(t),i 2 (t)) and U(t) = (f 1 (t),li2 (t)), where the first three members of each array

are the vector components of particle 1 (ii and EI) and the second three are those of

particle 2. The quantity (X, U) evolves according a Markov process with position and

velocity given by stochastic equations similar to (1) and (2).

For homogeneous isotropic turbulence, the two-point velocity p.d.f. is assumed to

be Gaussian with the velocity correlation tensor given by Batchelor (1953). The two

scalar functions appearing in this tensor are found by: 1) requiring that the flow satisfy

incompressibility, and 2) specifying the longitudinal correlation function, which describes

the velocity correlation in the direction of the particle separation vector, . Thus, the

important constraint of incompressibility is built into the two-particle model.

From his simulations, Thomson produced the correct rms two-particle separation

(oA) with 0rA OC t 3 /2 at short times (t <o a,/e) and o, oc t1 / 2 at long times (t > c,2/E),

i.e., consistent with inertial subrange theory (Batchelor, 1950). The model also gave

the correct rms single particle displacement (al): al oc t at short times and a, u C t 1 / 2

at long times in agreement with Taylor's (1921) theory. Figure la shows his results
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for the above rms displacements along with o-r, which is the rms value of the random

centroid position (E) of the two-particle system. The a,, used in nondimensionalizing

the displacement and time axes in Fig. 1 represents the rms turbulence velocity in this

homogeneous, isotropic case; on the abscissa, a is the emission time and t - S is the

particle travel time.

Figure lb shows the same rms displacements calculated from our two-particle code.

As can be seen, the results are in excellent agreement with Thomson's and exhibit the

same time variation discussed above.

The mean square concentration can be found using an approach given by

Sawford (1983) and is based on an integral of pA and pE over the particle-pair source

distribution; here, pA and pE represent the p.d.f.'s of the two-particle separation and

centroid. We omit the details of the method but stress the importance of pA and pE in

computing (c 2 ).

Figure 2 shows pa from Thomson's and our calculations for four dimensionless

times ((t - S)/(o,/e)),which are approximately the same in the two sets of calculations.

As can be seen, our curves reproduce Thomsons's results quite well. Note that p&

changes from a strongly peaked distribution at short times, (t - s)/(u/e) « 1, to a

Gaussian distribution at long times. In contrast, the pE (not shown) is nearly Gaussian

for all times; our pE results also reproduce Thomson's. The integration over pA and pE

to produce (c2 ) is being carried out and should be completed shortly.

3.2. Related Work on Concentration Fluctuations

In addition to stochastic modeling, we conducted two other investigations of

concentration fluctuations. One analysis focused on the statistics of concentrations

exceeding specified threshold levels and resulted in a publication (Kristensen et al.,

1989). A second focused on the cumulative distribution function (c.d.f.) of concentration

fluctuations from a point-source of nonbuoyant material in a laboratory-simulated

CBL (Deardorff and Willis, 1988). We showed that the c.d.f. of c'/oc, where c' is

the concentration fluctuation about C at any location and e is the rms value at the

same location, has a nearly self-similar shape over a broad range of distances. The

measurements were made along the plume centerline at ground level. The self-similar

shape has important and useful implications for modeling concentration fluctuations and

the p.d.f. of c.
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Figure 1. The root-mean-square values of particle-pair separation (oa), single-particle

displacement (o-1), and two-particle centroid displacement (uiE) as a function of time: a)

numerical results (points) computed by Thomson (1990) and analytical approximations

(lines) from a simple model (see Thomson), and b) our numerical results. In b, a in a,,,

represents A, 1, or E;same plotting symbols used for o&, o,,, and OE in a and b (see b).

Note difference in ordinate scales in a and b.
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Figure 2. The probability density function of partilce-pair separation as numerically
computed: a) by Thomson (1990), and b) from our numerical two-particle code. The
parameter in a is the dimensionless time (t - .)/(or /e) which is approximately the
same in a and b. 0 '1D is the effective one-dimensional value of the three-dimensional
displacement (o'1) in this homogeneous isotropic turbulence.
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